333 research outputs found

    Theory of spin and charge fluctuations in the Hubbard model

    Full text link
    A self-consistent theory of both spin and charge fluctuations in the Hubbard model is presented. It is in quantitative agreement with Monte Carlo data at least up to intermediate coupling (U8t)(U\sim 8t). It includes both short-wavelength quantum renormalization effects, and long-wavelength thermal fluctuations which can destroy long-range order in two dimensions. This last effect leads to a small energy scale, as often observed in high temperature superconductors. The theory is conserving, satisfies the Pauli principle and includes three-particle correlations necessary to account for the incipient Mott transition.Comment: J1K 2R1 10 pages, Revtex 3.0, 4 uuencoded postscript figures, report# CRPS-93-4

    Influence of next-nearest-neighbor electron hopping on the static and dynamical properties of the 2D Hubbard model

    Full text link
    Comparing experimental data for high temperature cuprate superconductors with numerical results for electronic models, it is becoming apparent that a hopping along the plaquette diagonals has to be included to obtain a quantitative agreement. According to recent estimations the value of the diagonal hopping tt' appears to be material dependent. However, the values for tt' discussed in the literature were obtained comparing theoretical results in the weak coupling limit with experimental photoemission data and band structure calculations. The goal of this paper is to study how tt' gets renormalized as the interaction between electrons, UU, increases. For this purpose, the effect of adding a bare diagonal hopping tt' to the fully interacting two dimensional Hubbard model Hamiltonian is investigated using numerical techniques. Positive and negative values of tt' are analyzed. Spin-spin correlations, n(k)n(\bf{k}), n\langle n\rangle vs μ\mu, and local magnetic moments are studied for values of U/tU/t ranging from 0 to 6, and as a function of the electronic density. The influence of the diagonal hopping in the spectral function A(k,ω)A(\bf{k},\omega) is also discussed, and the changes in the gap present in the density of states at half-filling are studied. We introduce a new criterion to determine probable locations of Fermi surfaces at zero temperature from n(k)n(\bf{k}) data obtained at finite temperature. It appears that hole pockets at k=(π/2,π/2){\bf{k}}=(\pi/2,\pi/2) may be induced for negative tt' while a positive tt' produces similar features at k=(π,0){\bf{k}}=(\pi,0) and (0,π)(0,\pi). Comparisons with the standard 2D Hubbard (t=0t'=0) model indicate that a negative tt' hopping amplitude appears to be dynamically generated. In general, we conclude that it is very dangerous to extract a bare parameter of the Hamiltonian (t)(t') from PES data whereComment: 9 pages (RevTex 3.0), 12 figures (postscript), files packed with uufile

    Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas.

    Get PDF
    Subduction zone magmas are more oxidised on eruption than those at mid-ocean ridges. This is attributed either to oxidising components, derived from subducted lithosphere (slab) and added to the mantle wedge, or to oxidation processes occurring during magma ascent via differentiation. Here we provide direct evidence for contributions of oxidising slab agents to melts trapped in the sub-arc mantle. Measurements of sulfur (S) valence state in sub-arc mantle peridotites identify sulfate, both as crystalline anhydrite (CaSO <sub>4</sub> ) and dissolved SO <sub>4</sub> <sup>2-</sup> in spinel-hosted glass (formerly melt) inclusions. Copper-rich sulfide precipitates in the inclusions and increased Fe <sup>3+</sup> /∑Fe in spinel record a S <sup>6+</sup> -Fe <sup>2+</sup> redox coupling during melt percolation through the sub-arc mantle. Sulfate-rich glass inclusions exhibit high U/Th, Pb/Ce, Sr/Nd and δ <sup>34</sup> S (+ 7 to + 11‰), indicating the involvement of dehydration products of serpentinised slab rocks in their parental melt sources. These observations provide a link between liberated slab components and oxidised arc magmas

    The Chlamydia muridarum plasmid revisited : new insights into growth kinetics.

    Get PDF
    Background: Research in chlamydial genetics is challenging because of its obligate intracellular developmental cycle. In vivo systems exist that allow studies of different aspects of basic biology of chlamydiae, the murine Chlamydia muridarum model is one of great importance and thus an essential research tool. C. muridarum carries a plasmid that has a role in virulence.  Our aim was to compare and contrast the C. muridarum plasmid-free phenotype with that of a chromosomally isogenic plasmid-bearing strain, through the inclusion phase of the developmental cycle. Methods: We measured infectivity for plasmid bearing and plasmid-cured C. muridarum by inclusion forming assays in McCoy cells and in parallel bacterial chromosome replication by quantitative PCR, throughout the developmental cycle. In addition to these studies, we have carefully monitored chlamydial inclusion formation by confocal microscopy and transmission electron microscopy. A new E.coli/chlamydial shuttle vector (pNigg::GFP) was constructed using standard cloning technology and used to transform C. muridarum for further phenotypic studies. Results: We have advanced the definition of the chlamydial phenotype away from the simple static observation of mature inclusions and redefined the C. muridarum plasmid-based phenotype on growth profile and inclusion morphology. Our observations on the growth properties of plasmid-cured C. muridarum challenge the established interpretations, especially with regard to inclusion growth kinetics. Introduction of the shuttle plasmid pNigg::GFP into plasmid-cured C. muridarum restored the wild-type plasmid-bearing phenotype and confirmed that loss of the plasmid was the sole cause for the changes in growth and chromosomal replication. Conclusions: Accurate growth curves and sampling at multiple time points throughout the developmental cycle is necessary to define plasmid phenotypes.  There are subtle but important (previously unnoticed) differences in the overall growth profile of plasmid-bearing and plasmid-free C. muridarum.  We have proven that the differences described are solely due to the plasmid pNigg

    The DDX6-4E-T interaction mediates translational repression and P-body assembly

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.4E-Transporter binds eIF4E via its consensus sequence YXXXXLΦ, shared with eIF4G, and is a nucleocytoplasmic shuttling protein found enriched in P-(rocessing) bodies. 4E-T inhibits general protein synthesis by reducing available eIF4E levels. Recently, we showed that 4E-T bound to mRNA however represses its translation in an eIF4E-independent manner, and contributes to silencing of mRNAs targeted by miRNAs. Here, we address further the mechanism of translational repression by 4E-T by first identifying and delineating the interacting sites of its major partners by mass spectrometry and western blotting, including DDX6, UNR, unrip, PAT1B, LSM14A and CNOT4. Furthermore, we document novel binding between 4E-T partners including UNR-CNOT4 and unrip-LSM14A, altogether suggesting 4E-T nucleates a complex network of RNA-binding protein interactions. In functional assays, we demonstrate that joint deletion of two short conserved motifs that bind UNR and DDX6 relieves repression of 4E-T-bound mRNA, in part reliant on the 4E-T-DDX6-CNOT1 axis. We also show that the DDX6-4E-T interaction mediates miRNA-dependent translational repression and de novo P-body assembly, implying that translational repression and formation of new P-bodies are coupled processes. Altogether these findings considerably extend our understanding of the role of 4E-T in gene regulation, important in development and neurogenesis.BBSRC [BB/J00779X/1 to N.S.]; CNRS PICS (to D.W.); Agence Nationale pour la Recherche [ANR-14-CE09-0013-01ANR to D.W.]; Gates Cambridge Foundation (to A.K.); Fondation Wiener – Anspach of the Université Libre de Bruxelles and the Cambridge Newton Trust (C.V.). Funding for open access charge: BBSRC

    Resonance peak in underdoped cuprates

    Full text link
    The magnetic susceptibility measured in neutron scattering experiments in underdoped YBa2_2Cu3_3O7y_{7-y} is interpreted based on the self-consistent solution of the t-J model of a Cu-O plane. The calculations reproduce correctly the frequency and momentum dependencies of the susceptibility and its variation with doping and temperature in the normal and superconducting states. This allows us to interpret the maximum in the frequency dependence -- the resonance peak -- as a manifestation of the excitation branch of localized Cu spins and to relate the frequency of the maximum to the size of the spin gap. The low-frequency shoulder well resolved in the susceptibility of superconducting crystals is connected with a pronounced maximum in the damping of the spin excitations. This maximum is caused by intense quasiparticle peaks in the hole spectral function for momenta near the Fermi surface and by the nesting.Comment: 9 pages, 6 figure

    Assessment of surface roughness and blood rheology on local coronary hemodynamics: a multi-scale computational fluid dynamics study

    Get PDF
    The surface roughness of the coronary artery is associated with the onset of atherosclerosis. The study applies, for the first time, the micro-scale variation of the artery surface to a 3D coronary model, investigating the impact on haemodynamic parameters which are indicators for atherosclerosis. The surface roughness of porcine coronary arteries have been detailed based on optical microscopy and implemented into a cylindrical section of coronary artery. Several approaches to rheology are compared to determine the benefits/limitations of both single and multiphase models for multi-scale geometry. Haemodynamic parameters averaged over the rough/smooth sections are similar; however, the rough surface experiences a much wider range, with maximum wall shear stress greater than 6 Pa compared to the approximately 3 Pa on the smooth segment. This suggests the smooth-walled assumption may neglect important near-wall haemodynamics. While rheological models lack sufficient definition to truly encompass the micro-scale effects occurring over the rough surface, single-phase models (Newtonian and non-Newtonian) provide numerically stable and comparable results to other coronary simulations. Multiphase models allow for phase interactions between plasma and red blood cells which is more suited to such multi-scale models. These models require additional physical laws to govern advection/aggregation of particulates in the near-wall region

    Effects of Next-Nearest-Neighbor Hopping on the Hole Motion in an Antiferromagnetic Background

    Full text link
    In this paper we study the effect of next-nearest-neighbor hopping on the dynamics of a single hole in an antiferromagnetic (N\'{e}el) background. In the framework of large dimensions the Green function of a hole can be obtained exactly. The exact density of states of a hole is thus calculated in large dimensions and on a Bethe lattice with large coordination number. We suggest a physically motivated generalization to finite dimensions (e.g., 2 and 3). In d=2d=2 we present also the momentum dependent spectral function. With varying degree, depending on the underlying lattice involved, the discrete spectrum for holes is replaced by a continuum background and a few resonances at the low energy end. The latter are the remanents of the bound states of the tJt-J model. Their behavior is still largely governed by the parameters tt and JJ. The continuum excitations are more sensitive to the energy scales tt and t1t_1.Comment: To appear in Phys. Rev. B, Revtex, 23 pages, 10 figures available on request from [email protected]

    New magnetic coherence effect in superconducting La_{2-x}Sr_{x}CuO_{4}

    Full text link
    We have used inelastic neutron scattering to examine the magnetic fluctuations at intermediate frequencies in the simplest high temperature superconductor, La_{2-x}Sr_{x}Cu_{4}. The suppression of the low energy magnetic response in the superconducting state is accompanied by an increase in the response at higher energies. Just above a threshold energy of ~7 meV there is additional scattering present below T_{c} which is characterised by an extraordinarily long coherence length, in excess of 50 \AA.Comment: 11 pages, RevTeX, 4 postscript figure

    A link between the spin fluctuation and Fermi surface in high T_C cuprates --- A consistent description within the single-band Hubbard model

    Full text link
    A link between the spin fluctuation and the "fermiology" is explored for the single-band Hubbard model within the fluctuation exchange (FLEX) approximation. We show that the experimentally observed peak position of the spin structure in the high T_C cuprates can be understood from the model that reproduces the experimentally observed Fermi surface. In particular, both the variation of the incommensurability of the peak in the spin structure and the evolution of the Fermi surface with hole doping in La_{2-x}Sr_xCuO_4 may be understood with a second nearest neighbor hopping decreasing with hole doping.Comment: 5 pages, RevTeX, uses epsf.sty and multicol.st
    corecore